Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(2): 456-465, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587592

RESUMO

Experiments and numerical simulations are described that develop quantitative understanding of atomic motion near the surfaces of nanoscopic photonic crystal waveguides (PCWs). Ultracold atoms are delivered from a moving optical lattice into the PCW. Synchronous with the moving lattice, transmission spectra for a guided-mode probe field are recorded as functions of lattice transport time and frequency detuning of the probe beam. By way of measurements such as these, we have been able to validate quantitatively our numerical simulations, which are based upon detailed understanding of atomic trajectories that pass around and through nanoscopic regions of the PCW under the influence of optical and surface forces. The resolution for mapping atomic motion is roughly 50 nm in space and 100 ns in time. By introducing auxiliary guided-mode (GM) fields that provide spatially varying AC Stark shifts, we have, to some degree, begun to control atomic trajectories, such as to enhance the flux into the central vacuum gap of the PCW at predetermined times and with known AC Stark shifts. Applications of these capabilities include enabling high fractional filling of optical trap sites within PCWs, calibration of optical fields within PCWs, and utilization of the time-dependent, optically dense atomic medium for novel nonlinear optical experiments.

2.
Nat Commun ; 5: 3808, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24806520

RESUMO

The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics, including novel quantum transport and many-body phenomena with photon-mediated atomic interactions. Reaching this goal requires surmounting diverse challenges in nanofabrication and atomic manipulation. Here we report the development of a novel integrated optical circuit with a photonic crystal capable of both localizing and interfacing atoms with guided photons. Optical bands of a photonic crystal waveguide are aligned with selected atomic transitions. From reflection spectra measured with average atom number N=1.1+/-0.4, we infer that atoms are localized within the waveguide by optical dipole forces. The fraction of single-atom radiative decay into the waveguide is Γ1D/Γ'≃(0.32±0.08), where Γ1D is the rate of emission into the guided mode and Γ' is the decay rate into all other channels. Γ1D/Γ' is unprecedented in all current atom-photon interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...